37 research outputs found

    Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme

    Get PDF
    AbstractThis paper discusses the application of the multizone decomposition technique with multiquadric scheme for the numerical solutions of a time-dependent problem. The construction of the multizone algorithm is based on a domain decomposition technique to subdivide the global region into a number of finite subdomains. The reduction of ill-conditioning and the improvement of the computational efficiency can be achieved with a smaller resulting matrix on each subdomain. The proposed scheme is applied to a hypothetical linear two-dimensional hydrodynamic model as well as a real-life nonlinear two-dimensional hydrodynamic model in the Tolo Harbour of Hong Kong to simulate the water flow circulation patterns. To illustrate the computational efficiency and accuracy of the technique, the numerical results are compared with those solutions obtained from the same problem using a single domain multiquadric scheme. The computational efficiency of the multizone technique is improved substantially with faster convergence without significant degradation in accuracy

    Moving-boundary problems solved by adaptive radial basis functions

    Get PDF
    The objective of this paper is to present an alternative approach to the conventional level set methods for solving two-dimensional moving-boundary problems known as the passive transport. Moving boundaries are associated with time-dependent problems and the position of the boundaries need to be determined as a function of time and space. The level set method has become an attractive design tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. Recent research on the numerical method has focused on the idea of using a meshless methodology for the numerical solution of partial differential equations. In the present approach, the moving interface is captured by the level set method at all time with the zero contour of a smooth function known as the level set function. A new approach is used to solve a convective transport equation for advancing the level set function in time. This new approach is based on the asymmetric meshless collocation method and the adaptive greedy algorithm for trial subspaces selection. Numerical simulations are performed to verify the accuracy and stability of the new numerical scheme which is then applied to simulate a bubble that is moving, stretching and circulating in an ambient flow to demonstrate the performance of the new meshless approach. (C) 2010 Elsevier Ltd. All rights reserved

    Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations

    Get PDF
    AbstractThis paper is the second in a series of investigations into the benefits of multiquadrics (MQ). MQ is a true scattered data, multidimensional spatial approximation scheme. In the previous paper, we saw that MQ was an extremely accurate approximation scheme for interpolation and partial derivative estimates for a variety of two-dimensional functions over both gridded and scattered data. The theory of Madych and Nelson shows for the space of all conditionally positive definite functions to which MQ belongs, a semi-norm exists which is minimized by such functions.In this paper, MQ is used as the spatial approximation scheme for parabolic, hyperbolic and the elliptic Poisson's equation. We show that MQ is not only exceptionally accurate, but is more efficient than finite difference schemes which require many more operations to achieve the same degree of accuracy

    Integrating Radial Basis Functions with Modelica for Mechatronic Design

    No full text
    corecore